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Abstract

In this paper\ we introduce a methodology to characterize time!dependent soot volume fraction ~uctuations in
turbulent di}usion ~ames via chaotic maps[ The approach is based on the hypothesis that ~uctuations of properties in
turbulent ~ames are deterministic in nature\ rather than statistical[ Our objective is to develop models of these ~uctuations
to be used in comprehensive algorithms to study the nature of turbulent ~ames and the interaction of turbulence with
radiation[ To this end we measured the time series of soot scattering coe.cient in an ethylene di}usion ~ame from light
scattering experiments and _t these data to linear combinations of chaotic maps of the unit interval[ Both time series
and power spectra can be modeled with reasonable accuracy in this way[ Þ 0887 Elsevier Science Ltd[ All rights reserved[

0[ Introduction

Most practical ~ames are turbulent in nature[ They
dissipate their energy predominantly via radiative trans!
fer[ These two physical phenomena\ along with chemical
kinetics and soot formation\ need to be understood very
well for better control of ~ames[ The nature of each one
of these physical mechanisms is very complicated and
more importantly\ all are coupled[ Yet\ most of the stud!
ies performed over the years have treated each of these
independently\ and have not considered the interactions
among them in detail[

Turbulent ~uid ~ow is still not well understood\ and
radiation transfer is too complicated to be modeled in
detail[ Furthermore\ even if a detailed model is
developed\ the accuracy of predictions is questionable
unless the medium properties are available[ These proper!

� Corresponding author[ Tel[] 990 595 146 4053^ Fax] 990 595
146 2293^ E!mail] super079Ýukcc[uky[edu

$ Contributions of S[ Chung to this study were part of research
conducted at the University of Kentucky as a National Science
Foundation Research Experiences for Undergraduates Fellow
during the summer of 0885[

ties\ e[g[ soot agglomerate size\ structure and volume
fraction distributions\ cannot be predicted with con!
_dence without modeling the interaction of chemical kin!
etics\ turbulence and radiation transfer[ In this paper we
will outline a formalism with the potential for treating
interactions of these phenomena in a computationally
e.cient\ yet realistic manner[

Detailed discussion of radiationÐturbulence inter!
actions in ~ames is available in the literature in the con!
text of classical Reynolds!averaged!based turbulence
models "see e[g[\ ð1ŁÐð6Ł#[ Despite the importance of radi!
ationÐturbulence interactions throughout the _eld of
combustion\ the problem remains {{unsolved|| in the sense
that it is currently not possible to predict ~ow and heat
transfer in high!Reynolds number "Re# combusting sys!
tems of practical importance with any degree of con_!
dence[ It must _rst be admitted that modeling of tur!
bulent ~ows has generally been less than successful in the
context of the Reynolds!averaged NavierÐStokes "N[ÐS[#
equations even in the absence of interactions with other
phenomena\ and even for quite simple ~ows\ as has been
recently demonstrated by Freitas ð7Ł[ Fundamental
reasons for this have been given by McDonough ð8Ł[

If progress is to be made\ it will probably have to be
in directions di}erent from past e}orts[ In particular\
it is simply not possible to correctly account for time!
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dependent interactions by using equations that merely
model "time!averaged# statistics\ even if these equations
are highly accurate[ This is easily seen by considering
prediction of behavior of a ~ame in an intermittent\ gusty
~ow _eld[ Statistical analysis would be likely to predict
preservation of a steady combustion process at some
level\ whereas the physics of the situation would dictate
that sooner or later the ~ame would be extinguished by
a gust\ and thereafter there would no combustion[ In
light of the obvious importance of understanding and
thus being able to control combustion processes\ and the
fact that past radiationÐturbulence interaction analyses
have been only partially successful\ we have begun studies
that represent a distinct departure from more standard
modeling techniques[

A new technique\ related to chaotic!map models\ was
theoretically analyzed by Hylin and McDonough ð09Ł in
the context of a turbulent modeling procedure known as
additive turbulence decomposition "ATD#\ and the basic
ideas associated with the type of model employed have
been considered previously in a somewhat ad hoc way
by\ e[g[\ Sreenivasan and Ramshankar ð00Ł[ The overall
ATD procedure consists of solving large!scale\ unav!
eraged governing equations containing small!scale
dependent variables that are directly modeled or simu!
lated in some manner closely resembling large eddy simu!
lation "LES#[ It is important to recognize that this rep!
resents a signi_cant departure from the usual Reynolds!
averaged methods in which statistics\ i[e[\ correlations of
dependent variables\ are modeled[ It is this feature of
modeling physical aspects of the ~ow that leads to the
ability to directly model interactions of turbulence with
other phenomena\ but at the same time it raises new
issues regarding construction of the required models[
Methods for carrying out such constructions\ and results
obtained in a speci_c case\ namely turbulent\ radiating
~ow in a di}usion ~ame\ will be the subject of this paper[

We will present a modeling approach to account for
interactions of turbulence with radiation and speci_cally
focus attention on the problem of introducing features
of physical measurements into the models[ In a recent
study ð0Ł a detailed experimental approach was outlined
to measure the soot volume fraction ~uctuations in a
turbulent ~ame\ which were later correlated using
chaotic!map models[ Even though the results presented
ð0Ł are quite promising\ the need for more thorough
analysis is obvious[ A detailed description of the map
construction procedure\ per se\ in the context of a model
problem is presented by McDonough et al[ ð01Ł[

The key underlying idea is to employ one!dimensional
chaotic maps of the unit interval as the foundation for
the model ð02Ł[ The rationale behind this stems from
the {universality| properties of certain of such maps\ as
demonstrated by Feigenbaum ð03Ł\ and others\ and par!
ticularly from the fact that their bifurcation sequences
can be similar to those of the N[ÐS[ equations ð04Ł[ "A

non!rigorous plausibility argument for this is given by
Frisch ð05Ł[# Thus\ they appear to provide good can!
didates for models of ~uctuating variables associated
with ~uid ~ow and related transport phenomena[

Here\ we focus only on the use of chaotic maps for
quanti_cation of soot mass ~uctuations in turbulent
di}usion ~ames[ Soot volume fraction plays a major role
in radiationÐturbulence interactions in ~ames[ In general\
soot formation and oxidation processes are controlled
by the chemical kinetics\ which is a strong function of
temperature and species concentration gradients[ Both of
these gradients are a}ected by the structure of the tur!
bulent ~ow _eld and by strong radiative heating and:or
cooling[ It will be shown via analysis of experimental
results that the radiationÐturbulence interactions in soot!
ing di}usion ~ames can be deterministic in nature\ thus
motivating the approach being employed here[ The main
results of this paper are the following] "i# a formalism for
radiationÐturbulence models based on dynamical systems
theory\ and "ii# construction\ analysis and comparison
with experimental data of such a model speci_cally for
soot volume fraction ~uctuations[

1[ Chaotic!map models

In this section we will provide details of the approach
taken to derive the new types of models described in the
Introduction[ We begin with a brief outline of the ATD
formalism to indicate precisely how such models can be
used in the framework of unaveraged governing equa!
tions for ~uid ~ow\ heat transfer\ etc[\ and thus to provide
a rationale for modeling requirements[ We then brie~y
describe the laboratory experiments employed to obtain
data for the present study[ The reader is refered to ð0Ł for
a more complete treatment of the experimental aspects[

1[0[ Additive turbulent decomposition

The modeling procedure we employ here has evolved
from early work by McDonough et al[ ð06\ 07Ł and
McDonough and Bywater ð08\ 19Ł on {large!scale:small!
scale decomposition| approaches applied to the Burgers|
equation model of the N[ÐS[ equations[ Additive tur!
bulent decomposition is now viewed as a family of
methods ranging from highly!parallelizable direct
numerical simulations "DNS#"cf[ McDonough and
Wang ð10Ł and Mukerji and McDonough ð11Ł# to the
very e.cient modeling procedures introduced in ð09Ł\ and
employed in McDonough et al[ ð12\ 13Ł and Salazar et
al[ ð14Ł[ It is this latter form of ATD to which the present
chaotic map construction pertains[

The ATD formalism consists of unaveraged\ time!
dependent transport equations along with an additive
decomposition of both the dependent variables "as in
large!eddy simulation# and of the governing equations
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themselves[ We note that the nonlinear Galerkin "NLG#
procedures of Temam and various co!workers "e[g[
Marion and Temam ð15Ł# comprise a special case of
ATD\ as is clear from recent work of Brown et al[ ð16Ł[
If we let q denote the dependent variable vector\ then in
the above context we can write

q"x\ t# � s
K

k � 0

q"k# "x\ t#\ x $ Rd\ d � 0\ 1\ 2\ "0#

where each q"k# represents a {scale of behavior| of the
physical phenomena "or in mathematical terms\ an
element of a subspace of an appropriate Hilbert space#\
and Rd denotes d!dimensional Euclidean space[ When
K � 1 we have

q"x\ t# � q¹ "x\ t#¦q�"x\ t#\ "1#

which is analogous to LES if we view q¹ as the {resolved|
scales and q� as the {unresolved| scales[

A typical transport equation for q can be expressed in
the general form

qt¦9 = F"q# � 9 = G"q#¦S"q#\ "2#

where F\ G\ and S are advective "nonlinear#\ di}usive
and source terms\ and the subscript t denotes di}er!
entiation with respect to time^ 9 is the gradient operator[
Substitution of "1# into "2# results in

"q¹¦q�#t¦9 = F"q¹¦q�# � 9 = G"q¹¦q�#¦S"q¹¦q�#[ "3#

We observe that in typical Reynolds!averaged
approaches equation "3# would be averaged\ whereas in
{complete| ATD it would be additively decomposed into
large! and small!scale parts "see ð10Ł for details#[

In the present case we would solve equation "3# for
q¹\ and model q�[ this leads to e.cient computational
procedures that can be applied on coarse grids " _ne
meshes are not needed to resolve large!scale behavior#\
but which are capable of predicting small!scale ~ow fea!
tures such as transition to turbulence\ relaminarization
and interactions between ~uid motion and other physical
phenomena[ It is the construction of these models\
especially the ~uctuating chaotic maps on which they are
based\ that comprises the main focus of the present work[

1[1[ General form of q�

As implied above\ we expect to solve equation "3# on
relatively coarse grids "generally no _ner than might be
used in Reynolds!averaged method solutions# intended
to accurately resolve only the large scales of motion[ In
particular\ it should not be expected that q¹ will include
any signi_cant portion of inertial subrange scales[ It fol!
lows that q� must serve as a correction to this under!
resolved solution approximation\ and must in some sense
model a signi_cant portion of the e}ects of energy trans!
fer through the inertial subrange\ and the dissipation of
energy at the Kolmogorov scales[

In principle there are at least several ways by which

one might accomplish this\ and here we describe only the
approach we believe to be the simplest[ Before providing
the details\ however\ we note a fundamental constraint
that we wish to impose on any such model[ Namely\ we
require q� : 9 as discretization step sizes go to zero in
order to preserve the consistency of equation "3# with
equation "2#[ The obvious consequence of this is that for
this class of models\ the complete procedure auto!
matically collapses to DNS[ We comment that the rate
at which this occurs with respect to re_nement of the
discretization is also very important for accuracy ð09Ł[

We must also emphasize that the quantities being mod!
eled here are distinctly di}erent from those modeled in
Reynolds!averaged approaches and in LES] q� is the
vector of ~uctuating dependent variables rather than stat!
istical correlations between various combinations of
these[ This leads to several advantages\ the most impor!
tant of which are the ability to model instant!by!instant
~uctuations and interactions\ the signi_cant reduction in
the number of quantities requiring a model\ and the
ability to obtain direct laboratory measurements for all
modeled quantities[ The _rst of these addresses problems
associated with highly unsteady ~ows alluded to in the
Introduction[ The second leads to greatly simpli_ed
modeling procedures^ the reader is referred to Wilcox
ð17Ł to gain an appreciation for the extreme complexity
of modern Reynolds!averaged!based models[ This will
also provide a understanding of the experimental di.!
culties associated with such models^ viz\ the models
require experimental results for numerous statistical
properties that cannot be measured and often cannot
even be accurately deduced from measurements[

The form of the chaotic map model considered here is

q� �AzM\ "4#

where A is an amplitude factor constructed from classical
theories of isotropic turbulence^ z is an anisotropy cor!
rection factor consisting mainly of _rst!order structure
functions of "local in space and time# high!pass _ltered
resolved!scale variables\ and M is a vector of nonlinear
"potentially chaotic# algebraic maps[ The amplitude fac!
tor must account for scales of motion ranging from just
smaller than the resolved scales to the Kolmogorov
scales\ and it may be di}erent for di}erent components
of q�[ The anisotropy factor must account for both physi!
cal and numerical grid anisotropies\ the latter of which
have proven di.cult to treat in the context of LES
speci_cally because of _ltering used to obtain equations
for the resolved scales[ Finally\ the chaotic map M\ the
main topic of the present study\ must re~ect the bifur!
cation sequences\ time scales and general ~uctuating
character of physical variables over the appropriate "as
induced by the resolved!scale calculations# range of
scales[ A complete analysis of equation "4# is provided in
ð09Ł\ and a more detailed summary than presented here
"with formulas for A and z# can be found in ð12Ł[ In
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neither if these references\ however\ is much concern
given to choice of the map M\ or to its construction from
experimental data[ We will address these issues in Section
2[

1[2[ Experimental data

Experiments were performed using a co!~ow di}usion
~ame burner[ The burner consists of a central fuel tube
surrounded by a co!annular oxidizer tube having diam!
eters of 0 and 4 cm with an overall height of 24 cm\ and
has been designed to produce a ~at velocity pro_le of the
oxidizer and the fuel[ The oxidizer tube has two dia!
metrically opposed inlet ports which make possible an
even distribution of the oxidizer across the cross!section
of the tube[ As oxidizer\ pressurized bottled air was used[
Ethylene "88[4) purity# was employed as fuel[ A diag!
nostic system based on a short!pulse\ 421 nm wavelength\
solid!state Q!switched Nd]YAG laser with an optical
parametric oscillator was utilized for data collection ð0Ł[

The underlying intent of the experiments conducted
for this study is to obtain data on angularly scattered
light intensity as a function of time[ This variation in
recorded intensity is related to transience of the scattering
particles "soot# in the control volume at the focal point
of the laser beam[ Experiments were conducted to obtain
data on scattered light intensity from soot particles at
29>\ providing a measure of soot volume fraction\ fv\ as
a function of time[ The time!series were obtained by
making single!shot measurements at the rate of thirty
data points per second "i[e[\ at laser pulse frequency# for
the ethylene ~ame using several di}erent air!fuel ratios\
and measurements were recorded at several di}erent
heights[

It is important to realize that similar experiments can
be carried out with a continuous!wave laser modulated
using an optical chopper[ These types of experiments are
needed to identify the e}ects of data collection frequency
on observables[ As discussed before\ however\ our objec!
tive here is to present a methodology rather than bringing
a complete solution to the problem[ For this reason we
did not conduct experiments other than those performed
at a single frequency of 29 Hz[

The fundamental hypothesis in our approach to ana!
lyzing these data\ and subsequently constructing tur!
bulence models\ is that turbulent ~uid ~ows and any
associated interacting phenomena are deterministic\
rather than stochastic\ in nature[ It should be noted that
this hypothesis is amply supported by both theoretical
and experimental results beginning with the work of
Ruelle and Takens ð20Ł[ It is therefore reasonable to
employ deterministic dynamical systems as turbulence
models\ and we remark that the N[ÐS[ equations comprise
one such system[ But there exist much simpler systems
possessing many of the features of the N[ÐS[ equations\

viz[\ chaotic time!series and bifurcation sequences leading
from steady to periodic\ and on to chaotic behavior[

There are a number of important tools that have been
developed for the qualitative and quantitative analysis of
dynamical systems\ or more precisely\ for analysis of
time!series generated by the evolution of such systems[
The reader is referred to Guckenheimer and Holmes ð21Ł
and Berge� et al[ ð22Ł for very readable treatments[ Here\
we will speci_cally employ the following in the analysis of
our experimental data] "i# time series\ "ii# power spectral
density "psd#\ "iii# delay maps\ and "iv# various statistical
characterizations^ but we caution that use of additional
ones such as Poincare� maps\ correlation dimension\ etc[
may be necessary to obtain more re_ned results[ More!
over\ it should be emphasized that none of these quan!
tities "i[e[\ power spectra\ fractal dimension\ etc[# can be
inverted to imply a unique time series[ Thus the modeling
e}ort must employ more sophisticated analyses and
quanti_cation of the time series behavior itself\ e[g[\ use
of total variation per unit time\ frequency of zero cross!
ings\ etc[\ in order to more precisely model complex\
periodic deterministic phenomena[ These latter tech!
niques have recently been employed ð01Ł in the context
of _tting data obtained from a model problem[ We will
utilize several of the most e}ective techniques identi_ed
in that study below[ Also note that in our earlier study\
ð0Ł\ the modeling e}ort was limited to _ts of psd pro_les[

We begin with direct observation of time series of
measured data in an e}ort to detect general features of
the temporal behavior of the phenomenon under con!
sideration such as periodicity\ intermittency or more
complex behavior[ Comparison of time series from
di}erent spatial locations and:or for di}erent values of a
control "bifurcation# parameter\ e[g[\ airÐfuel ratio\ may
reveal features suggesting a particular bifurcation
sequence\ and thus a particular chaotic map "or maps#
to be employed as a model[

Figure 0 presents four snap!shots of the ~ame over a 0
s time interval[ The exposure for each image is 0:3999 s[
The base diameter of the ~ame is 0 cm[ The Reynolds
number of the ~ame is increasing with increasing height\
and for the ~ame depicted it can be given roughly as
Re � 399 L\ where L is the length measured from the
nozzle "in cm#[ These Reynolds numbers are not very
large^ thus\ the ~ame itself is\ to an extent\ in the buoy!
ancy!in~uenced regime[ This provides a possible expla!
nation for observed strong oscillations at about 01 Hz\
which may be due to the buoyant instability as discussed
in ð29Ł[ With increasing Reynolds numbers\ this insta!
bility is likely to lose its importance[ Indeed\ our exper!
imental data also show that with increasing ~ame height\
the importance of 01 Hz oscillations diminishes[

The corresponding time series and psd at several axial
locations are shown in Figs 1"aÐc# and 2"aÐc# respec!
tively[ The time series suggest that the ~ow becomes more
turbulent at higher axial locations "increasing Re#[ In
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Fig[ 0[ Photograph of the ethylene di}usion ~ame at four successive time slices[

particular\ these data are strongly suggestive of a sub!
harmonic bifurcation sequence of the Feigenbaum type
ð03Ł[ As will be discussed in more detail in the next
section\ it is possible to gain considerable information
regarding time scales and amplitudes of various ~ow
{structures| simply through careful qualitative analysis of
the time series[ But if details regarding periodic\ sub!
harmonic or quasi!periodic features are required "as they
are for our present purposes#\ it is necessary to calculate
the power spectra[ We comment that for turbulent\ chao!
tic data it is typical for the psd to consist of a broad!
band spectrum "signi_cant power over a wide range of
frequencies# with f −a decay\ with a often in the range
9 ³ a ³ 1[ The psds displayed in Fig[ 2"aÐc# show only a
limited decay\ but on the other hand there is clear evi!
dence of a subharmonic bifurcation sequence "the 5 and
01 Hz peaks in Fig[ 2"b\ c##[ Thus the chaotic map"s#
chosen for the modeling process should at least exhibit
this feature[ "Here it is worth noting that the 01 Hz
oscillations are in the range of those reported by Buck!
master and Peters ð29Ł#[

2[ Model construction

We begin model construction by noting that the power
spectra presented in Fig[ 2"aÐc# are very similar to those
obtained from the time series of the logistic map\ a widely
studied nonlinear algebraic map ð02Ł[ Such strong simi!
larities earlier motivated us to employ a slightly modi_ed
form of the logistic map\

m"n¦0#
k � bkm

"n#
k "0−=m"n#

k =#\ "5#

as a simple model for ~uctuating absorption coe.cient
ð13Ł[ Here\ bk is the bifurcation parameter "analogous to
Re in the N[ÐS[ equation# and m"n#

k is the map iterate at
the nth iteration level[ Since we will be attempting to _t
experimental data using a combination of maps of the
form "5#\ we use an index k to distinguish di}erent maps
in the combination[ Equation "5# has also been used in
ð0Ł\ ð01Ł and ð12Ł[

Although there are strong similarities between the
experimental results and those obtained from the logistic
map\ there are also obvious di}erences in detail[ For the
present experimental data the psds clearly show at least
three distinct time scales in the spatially lower part of the
~ame in addition to the broad!band behavior\ and a
simple logistic map such as equation "5# is not able to
replicate this[ There are numerous means by which this
may be addressed[ Here we will begin with a simple linear
combination of logistic maps of the form of equation "5#]

M� � s
K

k � 0

akS
"n¦0#
k "vk\ dk\ mk"bk##\ "6#

where the superscript "n¦0# indicates an advanced iter!
ation level[ Each m"n#

k in equation "6# is calculated from
equation "5#\ but with di}erent values of bk[ These values
are employed in a function\ S"n#

k \ de_ned below\ and the
results for each index k are weighted by ak[ The _nal
value of the map combination at the advanced iteration
is constructed by adding a {history| term so that the
complete map takes the form
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Fig[ 1[ Time series of scattered light intensity from soot particles at di}erent axial locations along the ~ame] "a# h � 9[4 cm\ "b# h � 3[9
cm and "c# h � 6[9 cm[ Corresponding time series obtained from the best _ts of linear combination of logistic maps for locations] "d#
h � 9[4 cm\ "e# h � 3[9 cm and "f# h � 6[9 cm[

M "n¦0# � uM�¦"0−u#M "n#[ "7#

Here u is an {implicitness| factor which determines the
weight assigned to the history term[

The coe.cient S"n#
k in equation "6# depends on the

frequency of evaluation\ vk\ and the duration\ dk\ over
which each map remains active once it is switched on[
This coe.cient depends on a switching function\ F"n#

k

and a duration function\ D"n#
k [ The _rst of these is de_ned

as

F"n#
k 0 6

0 if "n mod vk# � 9\

9 otherwise[
"8#

This determines whether the kth map is to be activated
at the nth iteration[ The duration function is de_ned as

D"n#
k 0 8

0 if F"n#
k � 0

D"n−0#
k ¦0 if F"n#

k � 9 and 9 ³ D"n−0#
k ³ dk\

9 otherwise[ "09#
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Fig[ 2[ Power spectra from experimental time series of soot scattering intensity at di}erent locations] "a# h � 9[4 cm\ "b# h � 3[9 cm
and "c# h � 6[9 cm[ Power spectra of time series obtained from the best _t combination of logistic maps] "d# h � 9[4 cm\ "e# h � 3[9 cm
and " f# h � 6[9 cm[

This function determines how long a map remains active[
It is initialized to 0 when the map is activated according
to equation "8#\ is incremented by 0 each time the map is
evaluated and is set to 9 if it exceeds dk[ The switching
function\ F"n#

k \ is evaluated at every iteration independent
of D"n#

k [ Whenever F"n#
k is unity D"n#

k is initialized to 0\ and
the kth map is "re!#activated[ This happens irrespective
of the current value of D"n#

k [ Based on these function
de_nitions\ the coe.cient S"n#

k is computed as

S"n#
k � 6

m"n−0#
k if D"n#

k � 9

m"n#
k otherwise[

"00#

Our goal in the present research is to determine bk\ ak\
vk and dk so as to best _t the experimental time series
with the time series obtained from the chaotic map model\
M"n#[

2[0[ Data!_ttin` criteria

In this subsection we present one possible approach
based on a least!squares minimization of di}erences
between various properties of measured and modeled
time series[ We will brie~y discuss the procedures suc!
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cessfully used for model problem data in ð01Ł now applied
to the experimental data sets shown in Fig[ 1"aÐc#[

The _rst step in this procedure is to select properties
of the time series to quantify di}erences between
measured and modeled results[ We should emphasize that
the set of properties employed here is not unique\ but
it appears to be reasonably e}ective[ It includes both
mathematical and physical characterizations] averages\
total variation\ L0 and L1 norms\ slope sign changes per
unit time\ global minima and maxima\ mean crossings
per unit time\ skewness\ ~atness\ autocorrelation and
{extended| intermittency factors[ We discuss each of these
brie~y in what follows[ More details can be found in ð01Ł[

One of the most basic quanti_cations of a time series
that should match between measured and modeled results
is the time average\ u¹[ But given the complicated nature
of the time series shown in Fig[ 1"aÐc#\ we must re_ne
the analysis by measuring the separate averages of the
positive and negative values of u\ denoted u¹¦\ and u¹−\
respectively[ The other gross quanti_cations of the data
which we monitor are u¦

max\ u¦
min\ u−

max and u−
min the

maximum and minimum of positive and negative values
of u[

In addition to the averages\ we also measure the aver!
age variation of the time series\ an important quanti!
_cation of oscillatory behavior[ As was done before for
the averages\ we will employ separate positive and nega!
tive variations[ We also measure the number of zero
crossings per unit time\ N9\ number of positive mean
crossings\ Nmean¦ and number of negative mean crossings\
Nmean−\ as an additional step towards matching oscillation
frequencies between modeled and measured data[ This
can also be quanti_ed by the number of changes in sign
of the slope between successive pairs of points in the time
series normalized by the total number of points\ Ns2:N\
denoted fs2[ Just as was done for variation of the time
series\ we can separately consider this fraction for the
positive and negative parts f ¦

s2 and f −
s2[

The _nal property of the time series to be considered
here that directly involves detailed oscillatory behavior is
what we will term the intermittency distribution[ Recall
that the intermittency factor\ or simply intermittency\ at
a point in a turbulent ~ow is the fraction of time during
which the ~ow is turbulent at that point[ Here we will
de_ne intermittency levels by _rst requiring that the seg!
ment of the time series under consideration be oscillatory\
and then establishing the amplitude range of the oscil!
lations as a fraction of the interval ðumin\ umaxŁ[ The num!
ber of intermittency levels employed will be speci_ed at
the time analysis of a given data set is initiated\ and can
be expected to change somewhat from one time series to
the next[ Because the intermittency distribution proved
to be one of the most important measures of oscillatory
behavior\ and because to our knowledge it has not pre!
viously been used for analysis of experimental data\ we
will treat it in more detail[

To check whether a given segment of data is oscillatory
we carry out the following test[ At the nth discrete point
we calculate the forward and backward di}erences\

D¦u"n# 0 u"n¦0#−u"n#\

D−u"n# 0 u"n#−u"n−0#[ "01#

If either of the following inequalities is satis_ed we con!
sider the time series to be oscillatory in a neighborhood
of the nth point]

"D¦u"n##"D−u"n## ³ 9\

"D¦u"n##"D−u"n−0## ³ 9[ "02#

Once it has been established that a point is part of an
oscillation it is then possible to assign it to an inter!
mittency level[ We denote the intermittency levels by Ii

and the end points of these levels by `i[ Then for a total
of M intermittency levels "I0\ [ [ [ \ IM# there are M¦0
end points "`9\ [ [ [ \ `M# with `9 � umin and `M � umax[ The
intermittency levels can now be de_ned in terms of `is as]

I0 � ð`9\ `0Ł

I1 � ð`0\ `1Ł

*

IM � ð`M−0\ `MŁ[ "03#

We will denote the number of points of the time series of
an intermittency level i by NIi

[ We can then de_ne the
intermittency factors for each level as

fIi � NIi
:N[ "04#

The choice of M and the spacing between the `is depends
on the type of intermittency information that is critical
to the analysis and has to be matched by the modeled
time series[

In addition to the measures already discussed\ we also
calculate some global properties which may be necessary
for production of accurate models[ A global math!
ematical quantity that is widely used to characterize the
{size| of functions is the norm\ >=>[ In this study we have
employed the time averaged L0 and L1 norms\ de_ned in
the usual way[ From a purely mathematical standpoint
the L0 norm is sometimes more appropriate\ while the L1

norm has the physical interpretation of energy[
There are additional statistical properties that are

widely used in studies of turbulence\ which may be appro!
priate quanti_ers of the time series we study here[ These
include the autocorrelation function\ the probability den!
sity function "pdf #\ the ~atness F and the skewness S[
The de_nitions for these are well known and can be
found\ for example\ in ð18Ł[

2[1[ Least!squares functional

The various measures we have discussed for quan!
tifying the data in the form of time series will be used in
the model construction process[ If we let pmeas

i and pmodel
i
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denote the numerical value of property i as obtained from
experiment and model\ respectively\ and de_ne

dpi 0 pmeas
i −model

i \ "05#

then we can de_ne a weighted least!squares functional
corresponding to Np properties as

Q"a\ b\ v\ d# � s

Np

i � 0

fi"dpi#1\ "06#

where a �"a0\ a1\ [ [ [ \ ak#T\ etc[\ and fi are the weights
associated with di}erent properties[ We can then deter!
mine the unknown amplitudes\ bifurcation parameters\
frequencies and durations of map evaluations by min!
imizing Q[ Conceptually this is straightforward\ but in
practice it is di.cult in the present case because the dpi

are generally not di}erentiable with respect to b\ v and
d[ Thus\ direct search techniques have been used in the
present study[ We comment that the use of neural net!
works or simulated annealing techniques could be very
e}ective in these searches\ and these will be investigated
in future studies[

3[ Results and discussion

In this section we present results from applying the
analysis techniques discussed in the preceding section to
the experimental time series of scattered light intensities
from soot particles obtained from laboratory exper!
iments described in Section 1[2[ The data _tting approach
directly yields the parameters of the map combination
which produce the best _ts to the time series data at three
separate axial locations along the ~ame[ Thereafter\ we
use the map combination\ with parameters obtained by
interpolation\ to predict the time series at intermediate
locations in the ~ame[ This is important because in the
intended use of these maps as subgrid!scale models\ we
expect to specify the parameters of only a few maps at
discrete spatial locations in the ~ow by data _tting while
the parameters for maps at the intermediate locations
have to be obtained by interpolation[

All results to be presented were computed in double
precision "53!bit# FORTRAN on the HP!Convex Exem!
pler SPP 0199 at the National Center for Supercomputing
Applications\ University of Illinois\ Urbana!Champaign[

3[0[ Results of data!_ttin`

The experimental time series at di}erent axial locations
along the ~ame are shown in Fig[ 1"aÐc#[ The _rst 4999
time steps in the time series were neglected to remove the
e}ect of initial transients from the data[ The subsequent\
09 999 time steps were used for data!_tting computations
to guarantee a su.ciently long stationary state to permit
reliable analyses of the sort being performed here[ It
should be noted that only a small segment\ spanning 599

time steps\ of the complete time series is shown in Fig[
1 so that salient features can be clearly identi_ed[ The
corresponding power spectra and delay maps are shown
in Figs[ 2"aÐc# and 3"aÐc# respectively[ The power spec!
trum of the experimental time series was computed using
the last 7081 data points\ and the delay map was con!
structed based on the last 1999 points with a delay of 3[
The previously discussed measures for quantifying time
series data were computed for each of the experimental
time series of Fig[ 1"aÐc# and are shown in the third
column of Table 0 for only the h � 3[9 cm axial location[
These measures include intermittency factors from equa!
tion "04# in 09 equally spaced intervals\ i[e[ M � 09 in
equation "03#[ These intermittency factors are also shown
as histograms in Fig[ 4"aÐc#[

The time series show evidence of at least three di}erent
scales of structure in both space and time\ suggesting that
initially we should attempt a _t with three terms "K � 2#
in the linear combination of logistic maps in equation
"6#[ The evidence of enhanced turbulence levels at higher
axial locations is clear as the oscillation frequencies and
amplitudes of the time series increase going from Fig[
1"aÐc#[ Evidence of this increasing turbulent activity
going up the ~ame can also be seen in the psds where the
overall power levels increase from Fig[ 2"aÐc#[ But the
most striking feature to be noted in the power spectra are
the wide peaks at 5 Hz and 01 Hz in Fig 2"b\ c#[ These
peaks occur at lesser power levels in Fig[ 2"a#[ This is
clear evidence of a subharmonic bifurcation[ Also present
in each psd is a sharp peak at 09[7 Hz\ possibly the result
of quasi!periodicity[

Delay maps "shown in Fig[ 3# seldom provide anything
more than a qualitative indication of topology of a
dynamical system\ but they provide a simple "though
not completely foolproof# indicator of deterministic\ as
opposed to random behavior[ In this case it can be seen
that the delay map of Fig[ 3"c# is more {space!_lling| than
that of Fig[ 3"a# yielding further evidence of increased
turbulent behavior[

The detailed data!_tting procedure is carried out for
each of the three experimental time series shown in Fig[
1"aÐc#[ The _rst step in the analyses is to set up a par!
ameter space by choosing a wide range of combinations
of values of ak\ bk\ dk and vk\ k � 0\ 1\ 2[ Each chaotic map
combination is characterized by 01 parameters which are
selected as unique permutations of values in the par!
ameter space[ The time series of the chaotic map com!
bination is generated for each of these permutations using
equations "6# and "7#[ The same quantifying statistics
that were calculated for the experimental data are now
computed for each model time series\ and the least!
squares functional\ equation "06#\ is then constructed for
each case[ The computations for each case are inde!
pendent of all others and are done in parallel[ A direct
search is used to identify the cases with small values of
the functional\ Q[ These cases are considered to be the
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Fig[ 3[ Delay maps "with delay � 3# of the experimental time series of Fig[ 1 at di}erent axial locations along the ~ame] "a# h � 9[4
cm\ "b# h � 3[9 cm and "c# h � 6[9 cm[ Delay maps "with delay � 3# of the time series obtained from the best _t combination of logistic
maps] "d# h � 9[4 cm\ "e# h � 3[9 cm and " f# h � 6[9 cm[

{best| cases\ and ten of these cases are stored in each run[
These results are used to manipulate the parameter space
for the subsequent runs[ Initially\ coarse!grained searches
are made on slightly overlapping segments of the par!

ameter space[ Once the best segment has been identi_ed\
_ne!grained searches are made on smaller subsets of this
segment[ This is repeated until a minimum value\ Qmin\
of the least squares functional is obtained[
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Table 0
Statistical properties of data from experiments and best _t chaotic map model for location h � 3[9 cm in the ~ame

Property

Description

Measured Modeled
Weights

Contribution
no[ value value

fi

to Q
i pmeas

i pmodel
i fi"dpi#

1

0 Average "u¹# −1[194 ð−2Ł −2[911 ð−0Ł 1[185 ð−5Ł 1[955 ð−6Ł
1 Positive average "u¹¦# 1[519 ð9Ł 1[451 ð9Ł 1[185 ð−5Ł 6[580 ð−8Ł
2 Negative average "u¹−# −1[597 ð9Ł −1[752 ð9Ł 1[185 ð−5Ł 0[382 ð−6Ł
3 Average variation "VÞ"u## 2[021 ð9Ł 2[941 ð9Ł 1[185 ð−5Ł 0[347 ð−7Ł
4 Positive average variation "VÞ¦"u## 1[442 ð9Ł 1[988 ð9Ł 1[185 ð−5Ł 3[618 ð−6Ł
5 Negative average variation "VÞ−"u## 1[256 ð9Ł 1[174 ð9Ł 1[185 ð−5Ł 0[463 ð−7Ł
6 Slope sign changes\ total "fs2# 6[645 ð−0Ł 6[825 ð−0Ł 1[185 ð−5Ł 6[339 ð−09Ł
7 Slope sign changes\ u positive "f ¦

s2# 6[898 ð−0Ł 6[738 ð−0Ł 1[185 ð−5Ł 7[199 ð−00Ł
8 Slope sign changes\ u negative "f −

s2# 6[592 ð−0Ł 7[902 ð−0Ł 1[185 ð−5Ł 2[742 ð−8Ł
09 Time average L0 norm 1[503 ð9Ł 1[610 ð9Ł 1[185 ð−5Ł 1[517 ð−7Ł
00 Time average L1 norm 0[722 ð−0Ł 0[720 ð−0Ł 1[185 ð−5Ł 0[681 ð−02Ł
01 Overall minimum "umin# −0[436 ð0Ł −0[438 ð0Ł 1[185 ð−5Ł 3[562 ð−09Ł
02 Overall maximum "umax# 0[151 ð0Ł 0[159 ð0Ł 1[185 ð−5Ł 0[402 ð−8Ł
03 Positive minimum "u¦

min# 0[007 ð−2Ł 4[303 ð−3Ł 1[185 ð−5Ł 6[517 ð−02Ł
04 Positive maximum "u¦

max# 0[151 ð0Ł 0[159 ð0Ł 1[185 ð−5Ł 0[402 ð−8Ł
05 Negative minimum "u−

min# −0[436 ð0Ł −0[438 ð0Ł 1[185 ð−5Ł 3[562 ð−09Ł
06 Negative maximum "u−

max# 9[999 ð9Ł 9[999 ð9Ł 1[185 ð−5Ł 9[999 ð9Ł
07 Number of zero crossings:time "N9:N# 3[047 ð−0Ł 2[570 ð−0Ł 1[185 ð−5Ł 4[114 ð−8Ł
08 Number of u¹ crossings:time "Nmean:N# 3[053 ð−0Ł 2[560 ð−0Ł 1[185 ð−5Ł 4[470 ð−8Ł
19 Number of u¹¦ crossings:time "Nmean¦:N# 1[819 ð−0Ł 1[709 ð−0Ł 1[185 ð−5Ł 1[668 ð−09Ł
10 Number of u¹− crossings:time "Nmean−:N# 1[692 ð−0Ł 1[850 ð−0Ł 1[185 ð−5Ł 0[418 ð−8Ł
11 Skewness −0[510 ð−0Ł −2[447 ð−0Ł 1[185 ð−6Ł 7[501 ð−8Ł
12 Flatness 2[700 ð9Ł 1[778 ð9Ł 1[185 ð−6Ł 0[884 ð−6Ł
13 Intermittency factor " fI0

# 4[492 ð−0Ł 0[493 ð−5Ł
14 Intermittency factor " fI1

# 0[323 ð−0Ł 1[314 ð−6Ł
15 Intermittency factor " fI2

# Inter! Inter! 0[011 ð−1Ł 1[763 ð−7Ł
16 Intermittency factor " fI3

# mittency mittency 3[545 ð−3Ł 4[826 ð−6Ł
17 Intermittency factor " fI4

# factors factors 3[309 ð−4Ł 6[948 ð−01Ł
18 Intermittency factor " fI5

# shown shown 1[964 ð−4Ł 3[874 ð−7Ł
29 Intermittency factor " fI6

# graphically graphically 3[215 ð−4Ł 1[133 ð−8Ł
20 Intermittency factor " fI7

# in Fig[ 4"b# in Fig[ 4"e# 2[538 ð−3Ł 2[549 ð−09Ł
21 Intermittency factor " fI8

# 8[298 ð−2Ł 7[472 ð−6Ł
22 Intermittency factor " fI09

# 2[037 ð−0Ł 5[061 ð−6Ł

Least squares functional\ Q � 4[905 ð−5Ł[ Maximum contribution to Q is from property 13\ fI0
[

The direct search was carried out according to the
strategy described above[ Map combinations involving 2
and 3 terms were tried\ i[e[\ K � 2 and K � 3 in equation
"6#[ It was found that a combination of four maps pro!
duced Q values at least an order of magnitude smaller
than the _ts with three maps[ Hence only the four map
combination has been used in the present study to obtain
all the results discussed below[ The map parameters cor!
responding to the best case for each location in the ~ame
are given in Table 1[ It can be seen from this table that
the four bifurcation parameters\ bk\ of the map combi!
nation\ do not change with _ts to di}erent locations in
the ~ame[ The iteration frequencies\ vk\ also do not

change^ but some slight changes are observed in the dur!
ation counts\ dk[ Most of the changes occur in the ampli!
tude factors\ ak[ From our experience in this research\ the
bk had the strongest in~uence on Qmin[ But\ the particular
combination of bk shown in Table 1 turns out to be
surprisingly stable with respect to data _ts at di}erent
~ame locations[

The implicitness factor\ u\ was not a part of the direct
search but was manually modi_ed as the search
progressed\ and its optimal value is also shown in Table
1[ From equation "7# it can be seen that larger values of
u\ imply less {memory| of a time series of its past behavior[
The monotonically increasing trend of u " from Table
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Fig[ 4[ Intermittency distributions of the experimental time series at di}erent axial locations along the ~ame] "a# h � 9[4 cm\ "b# h � 3[9
cm and "c# h � 6[9 cm[ Intermittency distributions of the time series obtained from the best _t combinations of logistic maps] "d#
h � 9[4 cm\ "e# h � 3[9 cm and " f# h � 6[9 cm[

1"aÐc##\ indicates that as we go higher in the ~ame\ the
prevailing turbulent _eld exerts a greater in~uence on the
~uctuations of soot volume fraction^ and consequently\
there is a progressive weakening of the in~uence of past
history[

The search procedure produced Qmin ½ O"09−5# for all
three locations in the ~ame considered here[ To put this
into context\ we note that the maximum value was

Qmax ½ O"09−1#\ The time series for the best cases are
shown in Fig[ 1"dÐf#^ the corresponding power spectra
and delay maps "delay � 3# are shown in Fig[ 2"dÐf# and
3"dÐf#\ respectively\ and the histograms of the inter!
mittency distributions are presented in Fig[ 4"dÐf#[ These
results have to be compared with the experimental data\
Figs 1"aÐc#\ 2"aÐc#\ 3"aÐc# and 4"aÐc#\ respectively[ The
quantitative values for the various statistical properties
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Table 1
Map parameters corresponding to the best data _ts for di}erent
locations along the ~ame

Map\ k ak bk vk dk

"a#
u � 9[009
0 1[249 ð9Ł −2[71159 1999 199
1 0[499 ð9Ł −2[82753 069 047
2 −5[209 ð−0Ł −3[99845 0 0
3 1[999 ð−0Ł −3[02339 0 0

"b#
u � 9[166
0 1[171 ð0Ł −2[71159 1999 89
1 8[949 ð9Ł −2[82753 069 047
2 −0[699 ð0Ł −3[99845 0 0
3 −0[799 ð9Ł −3[02339 0 0

"c#
u � 9[219
0 3[087 ð0Ł −2[71159 1999 89
1 1[899 ð9Ł −2[82753 069 047
2 −3[319 ð0Ł −3[99845 0 0
3 1[999 ð9Ł −3[02339 0 0

"a# h � 9[4 cm\ "b# h � 3[9 cm and "c# h � 6[9 cm[

discussed earlier are presented in Table 0 for both the
modeled and experimental data at the h � 3[9 cm
location[ Similar tables can be constructed for the other
locations but are not presented here[

From the experience gained during this research\ it
appeared that the autocorrelations were not important in
obtaining a good match between modeled and computed
data in the present case^ hence\ these were ultimately
removed from the analysis[ The skewness and ~atness
properties also produced only a minor contribution to
the _tting process[ However\ it was found that the inter!
mittency factors were critical for a good data _t[ The
normalized weights shown in the _fth column of table 0
re~ect this\ with smaller weights assigned to skewness
and ~atness while the intermittency factors are heavily
weighted[ The algorithm used to specify the weights was
designed such that every important property had a bal!
anced contribution to Q[ In particular\ the raw weights
f¹ i\ were speci_ed as

fi �

F

G

j

J

G

f

0[9 for i � 0\ [ [ [ \ 10

9[0 for i � 11\ 12 "skewness and flatness#\

0

"pmeas
i #1

for i � 13\ [ [ [ \ 22 "intermittencies#\

"07#

and the normalized weights fi\ were computed from these
by

fi �
f¹ i

s
Np

i � 0

f¹ i

[

The time series\ "Figs 1"aÐc# and 1"dÐf##\ are in reason!
ably good qualitative agreement in the sense that cor!
responding _gures have similar qualitative appearance[
"One would not expect pointwise detailed agreement for
turbulent behavior[# From these _gures it can be seen
that the time averages and the amplitudes and frequency
of oscillations match very well and follow the correct
trends along the ~ame axis[ The di}erent scales of {struc!
tures| are replicated in detail in the modeled time series[
The distinct amplitudes ak in Table 1 give quantitative
information about the relative sizes of the di}erent scales[
There is generally good quantitative agreement too\ as
can be seen from Table 0[

The agreement in the power spectra\ Fig[ 2\ is quite
striking particularly because these were not part of the
modeling process[ Apart from the fairly good agreement
in the overall power levels and decay rates\ it can be
seen that the model is able to replicate the sub!harmonic
bifurcation indicated by the 5 and 01 Hz peaks[ The
experimental data show a sharp peak at 09[7 Hz "prob!
ably due to quasi!periodicity#^ the model is able to rep!
licate this at the correct power but at a frequency of 09
Hz[ This may be an inherent limitation of the logistic
map in producing quasi!periodic bifurcations[ The delay
maps in Fig[ 3\ appear to be topologically equivalent[
The delay map for the modeled time series at h � 6[9 cm
location\ Fig[ 3"f#\ has at least two points where the
trajectories are clustered together which is indicative of
an underlying periodic behavior[ A hint of this behavior
can also be seen in the corresponding experimental delay
map\ Fig[ 3"c#\ where we can see trajectories loosely clus!
tered into two separate lobes[

The skewness in the experimental intermittency dis!
tribution\ Fig[ 4"aÐc#\ changes along the ~ame[ The same
general behavior is also observed in the intermittency
distribution of the model\ Fig[ 4"dÐf#[ But there are some
di}erences in the details\ e[g[\ the intermittency dis!
tribution in the modeled case shown in Fig[ 4"d# is more
symmetric than the distribution in the corresponding
experimental case shown in Fig[ 4"a#[ One probable cause
for this is the weights associated with umin and umax[ These
properties are a part of the _tting procedure and in~uence
the intermittency calculations because they determine the
end points\ `9 and `M\ in equation "03#[ If these properties
are not matched closely between experimental and mod!
eled data then this would imply that the intermittency
calculations are being done in slightly di}erent intervals
in the two cases\ leading to the di}erences observed in
Fig[ 4"a\ d#[ The remedy to this is to match umin and umax

very closely for experimental and modeled data by using
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greater weights on these properties[ This will be
implemented in future research involving the present data
_tting approach[

3[1[ Predictions from maps with interpolated parameters

As discussed earlier\ here we will attempt to predict the
time series and their quantifying measures at intermediate
locations in the ~ame with the map parameters obtained
by interpolation of the parameters calculated by data!
_tting in the previous section[ Experimental time series
at two intermediate locations "h � 1[9 cm and h � 5[9
cm# are available and are shown in Fig[ 5"a\ b#[ These will
be used to compare the predictions from the interpolated
maps[

We use a quadratic polynomial interpolation to obtain
the parameters of the map combination at the inter!
mediate locations[ It should be noted from Table 1 that
some parameters which are constant for all the locations
"including all the bk values# are not interpolated[ Interp!
olation is done for all the amplitudes\ ak\ ad the duration
count\ d0\ that change with location[ It can be seen from

Fig[ 5[ Experimental time series of light scattering intensities at two intermediate locations along the ~ame] "a# h � 1[9 cm and "b#
h � 5[9 cm[ Corresponding predicted time series obtained from linear combination of logistic maps with interpolated parameters] "c#
h � 1[9 cm and "d# h � 5[9 cm[

Table 1 that parameters like a0 and a2 are monotonically
increasing "or decreasing#\ and reasonable results can
be expected by interpolation of these parameters[ Other
parameters like a1 and a3 vary quite nonlinearly "maybe
chaotically# and it is not clear what a good interpolating
function for these ought to be[ Here we use quadratic
interpolation for simplicity and for the lack of any physi!
cal reasons for doing otherwise[ The interpolated set of
map parameters are shown in Table 2 for h � 1[9 cm and
h � 5[9 cm locations\ respectively[ The map time series
obtained for these parameters are shown in Fig[ 5"c\ d#[
As was done before\ we generate psds and intermittency
histograms for both the experimental data "shown in Figs
6"a\ b# and 7"a\ b## and also for data from the interp!
olated maps "shown in Figs 6"c\ d# and 7"c\ d##[ We com!
pute the statistical properties and the least!squares func!
tional\ Q\ which are shown in Table 3 for only the h � 1[9
cm axial location[

Despite the fact that we are attempting the di.cult
task of trying to predict the behavior of a highly nonlinear
system\ the experimental data\ with another simpler non!
linear system\ the chaotic map combination\ the quali!
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Table 2
Map parameters obtained by quadratic interpolation of those
of Table 1 for intermediate locations along the ~ame

Map\ k ak bk vk dk

"a#
u � 9[086
0 0[976 ð0Ł −2[71159 1999 027
1 5[566 ð9Ł −2[82753 069 047
2 −4[519 ð9Ł −3[99845 0 0
3 −0[494 ð9Ł −3[02339 0 0

"b#
u � 9[205
0 2[432 ð0Ł −2[71159 1999 79
1 5[134 ð9Ł −2[82753 069 047
2 −2[267 ð0Ł −3[99845 0 0
3 0[608 ð9Ł −3[02339 0 0

"a# h � 1[9 cm\ "b# h � 5[9 cm

Fig[ 6[ Power spectra from experimental time series of soot scattering intensity at intermediate locations] "a# h � 1[9 cm\ and "b# h � 5[9
cm along the ~ame[ Corresponding power spectra of time series obtained from a combination of logistic maps with interpolated
parameters] "c# h � 1[9 cm and "d# h � 5[9 cm[

tative agreement in the time series\ Fig[ 5"aÐd#\ is fairly
good in terms of mean values\ amplitudes and oscillation
frequencies[ It can be seen from Table 3\ that although the
quantitative agreement between predicted and measured
statistics is good\ the functional\ Q\ obtained from the
maps with the interpolated parameters is an order of
magnitude larger than that obtained by data!_tted maps[
This is to be expected because the quadratic _t is only a
convenient approximation that is used here to interpolate
map parameters some of which vary in a nonlinear
fashion for di}erent locations on the ~ame[ It can be seen
that the power spectra\ Fig[ 6"aÐd#\ also agree well not
only in terms of the gross features like overall power
levels and decay rates\ but also in the _ner details of the
subharmonic and quasiperiodic peaks[ The overall match
in intermittency factors\ Fig[ 7"aÐd#\ is not very good
although they roughly show the correct skewness in oscil!
latory data[ The peaks in the intermittency data from the
experimental time series are not reproduced in the
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Fig[ 7[ Intermittency distributions of the experimental time series at intermediate locations] "a# h � 1[9 cm and "b# h � 5[9 cm\ along
the ~ame[ Intermittency distributions of the time series obtained from a combination of interpolated logistic maps] "c# h � 1[9 cm and
"d# h � 5[9 cm[

predicted data from the chaotic map models[ This only
emphasizes our previous observation from the data!_t!
ting exercise that the intermittency factors are important
in obtaining a good match between the two time series[
A close match between intermittency factors cannot be
guaranteed without resorting to a data!_tting procedure[

4[ Summary and conclusions

In this paper we have discussed a novel approach to
investigate the radiationÐturbulence interactions in
di}usion ~ames[ We have modeled experimental data
from a soot!laden turbulent di}usion ~ame produced
with a co!~ow burner[ The data show strong evidence
of a subharmonic bifurcation sequence from periodic
behavior at the tip of the burner to fully turbulent at some
height "depending on air:fuel ratio# above the burner[

On the basis of these observations we have constructed
chaotic map models of this behavior using linear com!
binations of a modi_ed logistic map[

We can draw several conclusions from this study that
we hope may lead to innovations in turbulence modeling
approaches]
+ The radiationÐturbulence interaction phenomenon in

a soot!laden ~ame is evidently deterministic\ rather
than random\ as has been reported earlier ð0Ł[

+ It is possible to devise fairly simple algebraic models
of this quite complicated ~ow situation\ but unlike
earlier attempts with other physical systems\ our model
displays correct bifurcation sequences in addition to
accurate behavior at individual parameter settings
within the sequence[ This implies a potential for {uni!
versality| and indicates that such models should be
extremely useful in the context of the ATD:chaotic
map turbulence modeling formalism as well as possibly
in LES[
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Table 3
Statistical properties of data from experiments and predictions from chaotic map model with interpolated parameters for location
h � 1[9 cm in the ~ame

Property Description Measured Modeled
Weights

Contribution
no[ value value

fi

to Q
i pmeas

i pmodel
i fi"dpi#

1

0 Average "u¹# −7[620 ð−3Ł −2[812 ð−0Ł 7[645 ð−6Ł 0[230 ð−6Ł
1 Positive average "u¹¦# 5[132 ð−0Ł 7[038 ð−0Ł 7[645 ð−6Ł 2[071 ð−7Ł
2 Negative average "u¹−# −5[700 ð−0Ł −0[049 ð9Ł 7[645 ð−6Ł 0[818 ð−6Ł
3 Average variation "VÞ"u## 6[197 ð−0Ł 0[948 ð9Ł 7[645 ð−0Ł 0[991 ð−6Ł
4 Positive average variation "VÞ¦"u## 4[816 ð−0Ł 6[006 ð−0Ł 7[645 ð−6Ł 0[128 ð−7Ł
5 Negative average variation "VÞ−"u## 5[986 ð−0Ł 8[317 ð−0Ł 7[645 ð−6Ł 8[606 ð−7Ł
6 Slope sign changes\ total "fs2# 6[636 ð−0Ł 6[709 ð−0Ł 7[645 ð−6Ł 2[366 ð−00Ł
7 Slope sign changes\ u positive "f ¦

s2# 6[574 ð−0Ł 6[737 ð−0Ł 7[645 ð−6Ł 1[211 ð−09Ł
8 Slope sign changes\ u negative "f −

s2# 6[702 ð−0Ł 6[674 ð−0Ł 7[645 ð−6Ł 5[708 ð−01Ł
09 Time average L0 norm 5[403 ð−0Ł 0[910 ð9Ł 7[645 ð−0Ł 0[084 ð−6Ł
00 Time average L1 norm 3[598 ð−1Ł 6[951 ð−1Ł 7[645 ð−6Ł 4[169 ð−09Ł
01 Overall minimum "umin# −3[630 ð9Ł −4[172 ð9Ł 7[645 ð−6Ł 1[458 ð−6Ł
02 Overall maximum "umax# 1[476 ð9Ł 2[920 ð9Ł 7[645 ð−6Ł 0[615 ð−6Ł
03 Positive minimum "u¦

min# 2[923 ð−3Ł 0[100 ð−2Ł 7[645 ð−6Ł 6[108 ð−02Ł
04 Positive maximum "u¦

max# 1[476 ð9Ł 2[920 ð9Ł 7[645 ð−6Ł 0[615 ð−6Ł
05 Negative minimum "u−

min# −3[630 ð9Ł −4[172 ð9Ł 7[645 ð−6Ł 1[458 ð−6Ł
06 Negative maximum "u−

max# 9[999 ð9Ł 9[999 ð9Ł 7[645 ð−6Ł 9[999 ð9Ł
07 Number of zero crossings:time "N9:N# 2[790 ð−0Ł 2[148 ð−6Ł 7[645 ð−6Ł 1[462 ð−8Ł
08 Number of u¹ crossings:time "Nmean:N# 2[790 ð−0Ł 2[370 ð−0Ł 7[645 ð−6Ł 7[869 ð−09Ł
19 Number of u¹¦ crossings:time "Nmean¦:N# 2[954 ð−0Ł 1[112 ð−0Ł 7[645 ð−6Ł 5[084 ð−8Ł
10 Number of u¹− crossings:time "Nmean−:N# 1[013 ð−0Ł 1[786 ð−0Ł 7[645 ð−6Ł 4[119 ð−8Ł
11 Skewness −4[514 ð−0Ł −0[986 ð9Ł 7[645 ð−7Ł 1[495 ð−7Ł
12 Flatness 3[303 ð9Ł 2[251 ð9Ł 7[645 ð−7Ł 8[566 ð−7Ł
13 Intermittency factor "fI0

# 6[122 ð−0Ł 1[234 ð−5Ł
14 Intermittency factor "fI1

# 0[874 ð−0Ł 2[066 ð−5Ł
15 Intermittency factor "fI2

# Inter! Inter! 3[623 ð−1Ł 0[116 ð−4Ł
16 Intermittency factor "fI3

# mittency mittency 2[495 ð−2Ł 8[789 ð−5Ł
17 Intermittency factor "fI4

# factors factors 0[711 ð−3Ł 0[001 ð−5Ł
18 Intermittency factor "fI5

# shown shown 0[775 ð−4Ł 3[292 ð−8Ł
29 Intermittency factor "fI6

# graphically graphically 6[985 ð−5Ł 0[158 ð−6Ł
20 Intermittency factor "fI7

# in Fig[ 7"a# in Fig[ 7"c# 0[387 ð−4Ł 0[334 ð−6Ł
21 Intermittency factor "fI8

# 0[611 ð−3Ł 1[453 ð−7Ł
22 Intermittency factor "fI09

# 1[583 ð−1Ł 1[659 ð−6Ł

Least!squares functional\ Q � 2[095 ð−4Ł[ Maximum contribution to Q is from property 15\ fI2
[
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